Polygon Side Lengths

(1) Find any missing coordinates. Plot and label the points on the coordinate grid. Draw the polygon by connecting the points.
a. Rectangle $A B C D$
A: $(1,1)$
B: $(-1,1)$

The length of $\overline{B C}$ is represented by
$|1|+|-4|=$ \qquad .

C: \qquad , \qquad
D: \qquad , \qquad
b. Right triangle $X Y Z$

$$
x:(-5,1) \quad Z:(-3,6)
$$

The length of $\overline{Z Y}$ is represented by $|6|-|1|=$ \qquad .
The length of $\overline{X Y}$ is represented by $|-5|-|-3|=$ \qquad .

Y: \qquad , \qquad _)
(2) Use rectangle $A B C D$ and triangle $X Y Z$ to fill in the following tables.

The first row has been done as an example.

Horizontal Sides	Segment Endpoints	Length Expression	Length
$\overline{A B}$	$(1,1)$ and (-1, 1)	$\|-1\|+\|1\|$	2

Vertical Sides	Segment Endpoints	Length Expression	Length

Practice Divide. Write any remainders using R.
(3)
$6 \longdiv { 7 , 3 2 9 }$
(4) $7 3 \longdiv { 3 , 2 8 5 }$
(5) $3 8 \longdiv { 8 , 3 9 8 }$
(6) $1 2 8 \longdiv { 2 , 3 1 0 }$

Finding the Areas of Parallelograms

Find the area of each parallelogram. Show your work.
(1)

(2)

Area: \qquad Area: \qquad
(3)

(4)

Area: \qquad Area: \qquad

Try This The area of each parallelogram is given. Find the length of each base.
(5)

(6)

Area: 26 square inches
Area: 5,015 square meters
Base: \qquad Base: \qquad

Practice Evaluate.
(7) 20% of 45 \qquad
(8) 45% of 60 \qquad
(9) 83% of 110

Triangle Area

Home Link 5-3

Find the area of each triangle. Remember: $A=\frac{1}{2} b h$.

Number model: \qquad
Area $=$ \qquad
(2)

Number model: \qquad
Area $=$ \qquad
(3)

Number model: \qquad
Area $=$ \qquad
Number model: \qquad
Area $=$ \qquad
(5) Find the length of the base.

Area $=18$ in. 2
Base = \qquad

Try This

(6) Draw a height for the triangle. Find the length of the height.

Area $=48 \mathrm{~m}^{2}$
Height $=$ \qquad

Practice

Compute.
(7) $|-7|=$ \qquad (8) $|4|=$ \qquad (9) $\quad=|-3|$

Areas of
 Complex Shapes

Home Link 5-4

In Problems 1-4, decompose the shapes into polygons for which area formulas can be used. Label the areas. Find the total area for each shape. Use appropriate units.
(1)

Area: \qquad
(3)

Area: \qquad
(2)

Area: \qquad

Try This

(4)

Area: \qquad

Practice Calculate.
(5) $12-8.25=$ \qquad
(6)
$工=9.03+0.7+18$
(7) $125.29-16.7=$ \qquad
(8) \qquad $=0.01+0.99$

Real-World Nets

Circle the solid that can be made from each net.

a.

b.

c.

a.

b.

c.

(3) Use the net and its corresponding geometric solid in Problem 2.
a. Which polygons make up the faces of your solid?

How many are there of each kind? \qquad
b. Which faces are parallel? \qquad
c. Which faces are congruent? \qquad
d. How many edges are there? How many vertices? \qquad

Practice Multiply.
(4) $5.2 * 3=$ \qquad
(5) $1.04 * 2=$ \qquad
(6) \qquad $=0.14 * 3$

Surface Area Using Nets

Silly Socks is trying to choose a type of plastic box for their socks.
The nets for three different box designs are given below.

Design 1

Design 2

Design 3

(1) Without calculating, predict which design will require the least amount of plastic to produce.
(2) Find the surface area for each plastic-box design.

Write a number sentence to show how you found the surface area.
Remember to use the correct order of operations.

Box Design	Surface Area	Number Sentence
Design 1		
Design 2		
Design 3		

(3) Explain how to find the surface area for any rectangular or triangular prism.
\qquad
\qquad

Practice Divide. Find your answer to the nearest hundredth.
(4)
$8 \longdiv { 7 , 0 3 4 }$
(5) $1 8 \longdiv { 6 , 7 2 3 }$
(6) $5 4 \longdiv { 6 , 6 2 4 }$

Surface Area

(1) Sam is painting the outside of a doghouse dark green (except for the bottom, which is on the ground).

The doghouse measures 3 feet wide by 4.5 feet long. It is 4 feet high.

The roof is flat, so the doghouse looks like a rectangular prism.

The entrance to the dog house is 1.5 feet wide by 2 feet high.
a. Label the doghouse diagram with the measurements.

b. On the grid below, draw a net for a prism that could represent Sam's doghouse.

Scale: $\square=1$ square foot

c. How many square feet is he painting? \qquad
d. One pint of paint covers about $44 \mathrm{ft}^{2}$. How many pints does he need? \qquad

Practice

Evaluate.
(2) 4^{3} \qquad (3) 1.5^{2} \qquad (4) 1^{50} \qquad (5) $\left(\frac{2}{3}\right)^{2}$ \qquad

Arguing about Areas

Jayson was comparing the areas of the polygons at the right.

Here is Jayson's reasoning: I think that Polygons K and L have the same area. I lined up the sides of each polygon and they were equal, so I labeled the sides with the same variables. So the area of Polygon K is equal to the area of Polygon L.

Area of Polygon K:
$s * s=s^{2}$

Area of Polygon L: $s * s=s^{2}$
(1) Explain the flaw in Jayson's reasoning.

Trace Polygon K above, and cut out your tracing. Use it to help you solve Problems 2-3.
(2) Draw two different polygons that have the same area as
Polygon K.
(3) Choose one of your polygons from

Problem 2. Describe how you used
Polygon K to draw a polygon that has the same area.

For Lesson 5-9, bring a rectangular prism, such as an empty tissue box, to class.

Practice Find the whole.
(4) 10% is 7 , so 100% is \qquad .
(5) 25% is 90 , so 100% is \qquad .

Find the volume for each prism.
SRB
(1)

Volume \qquad
(2)

Volume \qquad
(3) The Blueberry Blast cereal box is a rectangular prism that is 12 inches $\times 8$ inches $\times 4$ inches.
a. Label the diagram with the dimensions.
b. What is its volume? \qquad

(4) Greta's gift shop has three sizes of gift boxes.

They are all shaped like rectangular prisms. The dimensions are shown below.
Small: $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$
Large: $40 \mathrm{~cm} \times 30 \mathrm{~cm} \times 15 \mathrm{~cm}$
Medium: The area of the base is $1,000 \mathrm{~cm}^{2}$ and the height is 8 cm .
Find the volume of each gift box.
Small: \qquad Large:
Medium: \qquad

Practice Evaluate.
(5) $\frac{2}{3}+\frac{5}{6}=$ \qquad
(6) $4 \frac{3}{4}+\frac{7}{8}=$ \qquad
(7) $\frac{4}{5}-\frac{3}{4}=$ \qquad (8) $10-\frac{5}{12}=$ \qquad

Calculating Luggage Volume

You may want to consider how much volume your luggage holds when you travel. If you know how to calculate the area of a rectangular prism, you can also find the approximate volume of a suitcase. Below are the measurements of some common suitcase sizes.
(1) a. Find the volume of each suitcase.
b. Find the approximate volume of the interiors. Round to the nearest 0.01 in. ${ }^{3}$.

Suitcase 1

Exterior: 17 " $\times 15$ " $\times 8$ "
a. Volume: \qquad
Interior: 16 " $\times 13.75$ " $\times 6.5 "$
b. Volume: \qquad

Suitcase 3
Exterior: 24 " $\times 16$ " $\times 9.75 "$
a. Volume: \qquad
Interior: $22.5^{\prime \prime} \times 14.75$ " $\times 8.25 "$
b. Volume: \qquad

Suitcase 2

Exterior: 21 " $\times 14$ " $\times 7$ "
a. Volume: \qquad
Interior: $19.5^{\prime \prime} \times 13 " \times 5.75 "$
b. Volume: \qquad

Suitcase 4
Exterior: $28 " \times 19 " \times 9 "$
a. Volume: \qquad
Interior: $26 " \times 17.5^{\prime \prime} \times 7.5^{\prime \prime}$
b. Volume: \qquad
(2) Describe how you can estimate the interior volume of a suitcase if you know the exterior measurements.
\qquad
\qquad
\qquad

Practice Evaluate.
(3) $\frac{2}{3} \div \frac{1}{6}=$ \qquad (4) $\frac{5}{12} \div \frac{7}{12}=$ \qquad
(5) \qquad $=2 \frac{2}{3} \div \frac{1}{2}$
(6) $8 \div 2 \frac{2}{3}=$ \qquad

Volume of Letters

The Santiago Balloon Emporium sells custom balloons shaped like letters of the alphabet. Clarissa orders balloons that spell DOLLIE for her friend's birthday. She wants the balloons to float, so she plans to fill them with helium. To estimate how much it will cost, Clarissa needs to calculate the approximate volume of helium she will need to fill the balloons.

The volume of each balloon can be estimated based on rectangular prisms.

Measure the dimensions in millimeters for each rectangular part of the letters.
(1) The scale is $1 \mathrm{~mm}=1$ inch. Each letter has a depth of 5 inches. Estimate the volume of each letter.
D: \qquad
0 : \qquad
$\mathrm{I}:$ \qquad E: \qquad
L:
\qquad
(2) What is the approximate total volume of helium (in cubic inches) needed to fill the letters?

Practice Divide.

(4)
$4 \longdiv { 2 5 . 6 }$
(5) $0 . 8 \longdiv { 3 2 4 }$
(6) $0 . 1 6 \longdiv { 4 8 }$
(7) $9 . 5 \longdiv { 4 1 . 8 }$

Could a Giant Breathe?

Think about how area and volume change in relation to changes in linear measurements.
(1) How many centimeters are in 1 meter?
(2) How many square centimeters are in 1 square meter? \qquad
(3) How many cubic centimeters are in 1 cubic meter? \qquad
One cubic centimeter of water has a mass of about 1 gram.
(4) One cubic meter of water has a mass of:
\qquad
\qquad kilograms
(5) One kilogram has a weight equivalent to about 2.2 pounds. One cubic meter of water weighs about how many pounds? \qquad
Oxygen enters your body through the surface area of your lungs.
(6) A giant who is 10 times as tall as you would have lungs that provide \qquad as much oxygen as your lungs.
(7) If the surface area of the giant's lungs were 100 times greater than yours, and if the giant required oxygen in the same proportions as a human, how do you know the giant would not have enough oxygen? Explain.
\qquad
\qquad

Try This

(8) Your lungs fit in a relatively small space inside your rib cage. Research how your lungs increase surface area to be able to supply all the oxygen you need.
\qquad
\qquad

Practice For Problems 9-10, record the opposite of the number.
(9) -7 \qquad (10) 0 \qquad (11) The opposite of the opposite of -3
\qquad
242

Simplifying Expressions

(1) Simplify each expression by combining the like terms.
a. $42 x+12 x$
b. $17 w-8 w$
c. $25.42 e-23.3 e$ \qquad d. $88 h+30.5 h$ \qquad
(2) Simplify. Check that your expressions are equivalent.
a. $12 m+24 m$
b. $90 a-30 a$
c. $14 b+15 b+8$
d. $58 d+25-22 d$
e. $3(14+15 f)+79$
f. $20(18+5 t)-47+28 t$

Practice
Insert $=,<$, or $>$.
(3) -5 \qquad -10
(4) 0.23 \qquad 0.009
(5) -11 \qquad 1
(6) 0.092 \qquad 0.0920

Equivalent Expressions Puzzle Pieces

Lesson 6-7

