Using Order of Operations

(1) Insert parentheses to make the expression equivalent to the target number.

Numerical Expression

$8-2+5$
$15-3 * 4+2$
Target Number

$$
1
$$

50
$3 * 5+4 * 6$
(2) Simplify each expression.
a. $(3+9)^{2}$ \qquad b. $2^{4} * 2^{2}$
c. $20-(6-4)$ \qquad d. $\left(\frac{1}{2} \div \frac{1}{4}\right) * 6$
\qquad
\qquad
(3) Complete the table.

Exponential Notation	Multiplication Expression	Standard Notation
4^{2}	$4 * 4$	16
3^{3}		
	$7 * 6$	
	$7 * 7 * 7 * 7$	

(4) Use the given calculator keys to find an expression equivalent to the target number. You may use the keys more than once or not at all.

Keys	Target	Expression
(3) 2 (\triangle (Enter	29	
(7) 3 (Enter	343	
$\begin{aligned} & \text { Try This } \\ & \bullet(2) \sqrt{3} \text { Enter } \end{aligned}$	0.2222	

Practice

Write the opposite of each number.
(5) 12 \qquad (6) -2 \qquad (7) -3.5
(8) $\frac{3}{5}$
\qquad

Practicing Order of Operations

In Problems 1-3, tell whether the number sentence is true or false.
If it is false, rewrite it with parentheses to make it true.

Number Sentence

(1) $4+8 \div 4+4=5$
(2) $46=3 * 6+7 * 4$
(3) $15-12 \div 3+6 \div 2=8$
(4) Evaluate.
a. $45-(1+4)^{2}+3$
b. $(2+4)^{2} *(1+2)^{4}$
(5) Write an expression for AT LEAST three of the following numbers using six 7 s . All values can be found using only addition, subtraction, multiplication, and division.
$1=$ \qquad
$2=$ \qquad
$3=$ \qquad
$4=$ \qquad
$5=$ \qquad
$6=$ \qquad

Practice

Find the greatest common factor.
(6) $\operatorname{GCF}(10,50)=$ \qquad (7) $\operatorname{GCF}(80,24)=$ \qquad (8) $\operatorname{GCF}(90,54)=$ \qquad

Using Expressions

(1) a. Write a numerical expression for calculating the number of shaded border tiles for the pictured 12-by-12 tiled floor.

Number of shaded tiles: \qquad

b. Circle the expressions below that also represent the number of shaded tiles in the 12-by-12 tiled floor.
$11+11+11+11 \quad 4 * 12+4 \quad(12-2)+(12-2)+12+12 \quad 4 * 12-2$
c. Choose one of the expressions you circled in Part b and explain how it represents the number of shaded tiles.
\qquad
\qquad
\qquad
(2) A rectangular tiled floor is shown at the right. Write an expression that models how you can find the number of shaded tiles in the
 3-by-10 rectangular floor.

Number of shaded tiles: \qquad
(3) Write an expression that models how you can find the number of shaded tiles in the 3-by-13 rectangular floor
 shown at the right.

Number of shaded tiles: \qquad

Try This

(4) Write an algebraic expression for the number of shaded tiles in a 3-by-n rectangular floor. Use your expression to find the number of shaded tiles in a 3-by-125 tiled floor.

Practice Find the least common multiple.
(5) $\operatorname{LCM}(3,5)=$ \qquad (6) $\operatorname{LCM}(10,12)=$ \qquad (7) $\operatorname{LCM}(6,12)=$ \qquad

Algebraic Expressions

Write an algebraic expression. Use your expression to solve the problem.
(1) Kayla has x hats. Miriam has 6 fewer hats than Kayla. \qquad If Kayla has 22 hats, how many hats does Miriam have? \qquad
(2) The width of Rectangle A is half of its height. Write an algebraic expression for the width of Rectangle A.
a. Define your variable. Let \qquad represent \qquad
b. Algebraic expression: \qquad
c. Using the variable you defined in Part a, write an algebraic expression for the perimeter of Rectangle A. \qquad
(3) Larry ran 2.5 miles more than Jusef.

Write an algebraic expression for how far Larry ran.
a. Define your variable. Let \qquad represent \qquad
b. Algebraic expression: \qquad
c. If Jusef ran 5 miles, how many miles did Larry run? \qquad
(4) For each situation, choose an expression from the box that matches the situation, and write it in the matching blank. You may use an expression more than once.

$n \div 25$	$2 n+4$	$n \div 4$	$4 n+2$
$4 n$	$n-4$	$n+4$	$25 \div n$

a. With 4 bags of n potatoes, the total number of potatoes is \qquad .
b. If you exchange n quarters for dollars, you get \qquad dollars.
c. There are n pens in a box. Denise has 4 pens more than 2 boxes of pens. The total number of pens Denise has is \qquad .

Practice

Use $<,>$, or $=$ to make the number sentence true.
(5) $\frac{3}{4}$ \qquad (6) 0.4 \qquad 0.400
(7) 0.8 \qquad 0.67

Equations

(1) Look for a pattern in the set of numerical equations. Describe the pattern in words. Use a variable and write an equation that represents the pattern.
St-
$3^{6}=3^{2} * 3^{4}$
$58^{6}=58^{2} * 58^{4}$
$(0.25)^{6}=(0.25)^{2} *(0.25)^{4}$
a. Description: \qquad
\qquad
b. Equation that generalizes the pattern: \qquad
c. Write two more examples of the pattern: \qquad
(2) For each equation, circle the number of solutions you could find.

a. $c+c=2 * c$	Many	None	One
b. $28=t-2$	Many	None	One
c. $m-1=m-2$	Many	None	One

(3) Circle the answer that best describes each equation.
a. $c+c=2 * c$
Always true
Never true
Cannot tell
b. $28=t-2$
Always true
Never true
Cannot tell
(4) Explain your answer to Problem 3b. \qquad

Try This

(5) The numbers 4, 5, and 6 are called consecutive numbers because they follow each other in order. The sum of 4,5 , and 6 is 15 -that is, $4+5+6=15$. Circle all equations that generalize finding a sum of 170 for three consecutive numbers.
a. $x+2 x+3 x=170$
b. $170=x+(x+1)+(x+2)$
c. $3 x+3=170$

Practice Estimate whether each sum is closest to $0, \frac{1}{2}, 1$, or $1 \frac{1}{2}$.
(6) $\frac{8}{9}+\frac{5}{8}$ \qquad (7) $\frac{1}{10}+\frac{1}{11}$ \qquad (8) $\frac{5}{6}+\frac{2}{16}$
\qquad

The Distributive Property

(1) Each of the expressions describes the area of the shaded part of one of the rectangles. Write the letter of the correct rectangle next to each expression.

Rectangle L

a. $4 *(11-6)$ \qquad
b. $44-20$ \qquad
c. 30 \qquad d. $(6 * 9)-(6 * 4)$ \qquad
e. $(4 * 11)-(4 * 6)$ \qquad f. $(11-5) * 4$ \qquad
g. $(11 * 4)-(5 * 4)$ \qquad h. $6 *(9-4)$ \qquad
(2) Circle the equations that are examples of the Distributive Property.
a. $(80 * 5)+(120 * 5)=(80+120) * 5$
b. $6 *(3-0.5)=(6 * 3)-0.5$
c. $\left(9 * \frac{3}{8}\right)-\left(\frac{2}{3} * \frac{3}{8}\right)=\left(9-\frac{2}{3}\right) * \frac{3}{8}$
d. $(16 * 4)+12=(16+12) *(4+12)$

Write an equation to show how the Distributive Property can help you solve each problem.
(3) Kelly signed copies of her new book at a local bookstore.

In the morning she signed 36 books, and in the afternoon she signed 51 books. It took her 5 minutes to sign a book. How much time did she spend signing books?

Equation: \qquad Solution: \qquad
(4) Mr. Katz gave a party because all the students scored 100% on their math tests. He had budgeted $\$ 1.15$ per student. It turned out that he spent $\$ 0.25$ less per student. How much money did he spend for 30 students?

Equation: \qquad Solution: \qquad

Practice Write the reciprocal.
(5) 5 \qquad
(6) $\frac{2}{9}$ \qquad
(7) $3 \frac{1}{3}$ \qquad

Applying the
 Distributive Property

(1) Match each property with a generalized form of the property.

Commutative Property of Addition
Commutative Property of Multiplication
Associative Property of Addition
Associative Property of Multiplication
Distributive Property of Multiplication over Addition
Distributive Property of Multiplication over Subtraction

$$
\begin{aligned}
& a *(b * c)=(a * b) * c \\
& a * b=b * a \\
& a *(b+c)=a b+a c \\
& (a * b)-(a * c)=a *(b-c) \\
& a+b=b+a \\
& (a+b)+c=a+(b+c)
\end{aligned}
$$

(2) For each equation below, use general equations for properties to determine whether it is true or false. For each true number sentence, list the property or properties that apply. For false number sentences, write "None."
a. $(9-4) * 3=(9-3) *(4-3)$ \qquad Property: \qquad
b. $(8+5) * 2=(8+2) *(5+2)$ \qquad Property: \qquad
c. $(8+5) * 2=2 *(8+5)$ \qquad Property: \qquad
Use the Distributive Property to solve Problems 3-4.
(3) Show how to solve the problems mentally.
a. $85 * 101=$ \qquad
b. $156 * 9=$ \qquad
c. $48 * 24=$ \qquad
(4) Rewrite each expression as a product by taking out a common factor.
a. $48+24=$ \qquad * \qquad $+$ \qquad) $=$ \qquad * \qquad
b. $72-56=$ \qquad * \qquad - \qquad) $=$ \qquad * \qquad
c. $(2 y)+(3 * y)=$ \qquad $+$ \qquad) * \qquad $=$ \qquad * \qquad

Practice

Use $<,>$, or $=$ to make the sentence true.
(5) $\frac{2}{3}-\frac{2}{5}$
(6) $0.7-\frac{4}{5}$
(7) 0.3 \qquad 0.23
(8) $1 \frac{1}{4}$ \qquad 1.25

Building with Toothpicks

Home Link 4-8

NAME

Yaneli is building a pattern with toothpicks. The pattern grows in the following way:

Design 1

SRB 225
(1) How many toothpicks are needed for Design 5? \qquad
(2) How many toothpicks are needed for Design 10?
(3) Describe in words how you see the toothpick design growing. What stays the same from one figure to the next? What changes?
\qquad
\qquad
(4) Write an expression to represent how many toothpicks are needed for Design n ?
(5) What toothpick design number could you build with exactly 82 toothpicks? \qquad
(6) Describe how you can figure out the number of toothpicks you need for any design number.
\qquad
\qquad

Practice

Evaluate each expression.
(7) $7^{2}=$ \qquad
(8) \qquad $=2^{4}$
(9) $1^{5}=$ \qquad
(10) $4^{3}=$ \qquad

Inequalities

(1) Amelia's cell phone plan lets her send a maximum of 500 text messages per month.

Define a variable. \qquad
Write an inequality to represent Amelia's situation. \qquad
(2) The temperature in the freezer should be no higher than $-18^{\circ} \mathrm{C}$.

Define a variable. \qquad
Write an inequality to represent the situation. \qquad
(3) Sam scored 68 in miniature golf. What score would beat Sam's score?

Define a variable: \qquad
Write an inequality to represent the situation. \qquad
(4) Choose the number sentence that represents each statement.

$x \geq 42$	$x>42$
$x \leq 42$	$x<42$

a. A number is less than 42. \qquad
b. A number is greater than 42 . \qquad
c. A number is at least 42 . \qquad
d. A number is no greater than 42 . \qquad

Practice

(5) $=5.6+11.7$
(6) $9.2+$ \qquad $=12.1$
(7) $19.37-9.29=$ \qquad
(8) $=0.834-0.75$

Solving and Graphing Inequalities

Describe the solution set for each inequality.
Graph the solutions for each inequality.
(1) a. $5<n$ \qquad

b. $q<5$

c. $w>-3$ \qquad

(2) Write the inequality represented by each graph below.
a.

b.

c. List three numbers that are part of the solution set for Part a.
(3) a. Write an inequality with a solution set that is all numbers less than 0 .
b. Find three numbers that are not in the solution set for Part a.
c. Write an inequality with a solution set that does not have any numbers in common with the solution set in Part a or the numbers you wrote in Part b.

Practice

Solve.
(4)
$3.45 * 2=$ \qquad (5) $3.2 * 4.5=$ \qquad (6) $=1.53 * 3.3$
(1) If the temperature of an alligator nest is below $86^{\circ} \mathrm{F}$, the female alligators hatch.

Define a variable: \qquad
Represent the statement with inequalities: \qquad
Graph the solution set that makes both inequalities true.

Describe how your graph represents the situation.
(2) If the temperature of an alligator nest is above $93^{\circ} \mathrm{F}$, the male alligators hatch. Use the same variable you used in Problem 1.

Represent the statement with inequalities: \qquad
Graph the solution set that makes both inequalities true.

(3) Adult alligators are at least 6 feet long. The longest one on record was 19 feet.

Define a variable: \qquad
Represent the statement with inequalities: \qquad
Graph the solution set that makes both inequalities true.

(4) Alligators lay 20-50 eggs in a clutch. Variable: \qquad
Represent the statement with inequalities: \qquad
Graph the solution set that makes both inequalities true.

Describe how your graph represents the situation.

Practice Evaluate.
(5) 15% of 60
(6) 25% of 300 \qquad (7) 250% of 18
\qquad

Absolute Value

(1) a. On the number line, plot points at two numbers whose absolute values are 8 .

b. Explain why you get a positive number when you take the absolute value of a negative number.
\qquad
\qquad
(2) Complete.
a. $|20|=$
b. $|8.25|=$ \qquad c. $|-79|=$ \qquad
d. $|-0.004|=$
e. $\left|-10 \frac{1}{2}\right|=$ \qquad f. $|0|=$ \qquad
(3) Find at least three numbers that answer each riddle.
a. A number with an absolute value that is equal to itself \qquad
b. A number with an absolute value that is its opposite \qquad
(4) Make up your own absolute value riddle.

Try This

(5) Find at least three numbers that make each statement true.
a. $|x|=-x$
b. $|x|>-x$

Practice Divide. Express your remainder as a fraction.
(6) $8 \longdiv { 3 , 2 5 4 }$
(7) $5 2 \longdiv { 7 , 8 5 9 }$

Using Absolute Value

For Problems 1-2, do the following:

- Plot the numbers on the number line.
- Answer the question.
- Circle the number model that supports your answer.
(1) The freezing point of water is $0^{\circ} \mathrm{C}$. In Chicago, it is $-7^{\circ} \mathrm{C}$. In Montreal, it is $-9^{\circ} \mathrm{C}$.

Which city's temperature is farther from 0 ? \qquad
$-7>-9 \quad$ or $\quad|-9|>|-7|$
(2) Rita has a debt of $\$ 14$, and Jamal has a debt of $\$ 18$.

Whose balance is farther from 0 ? \qquad
$|-18|>|-14| \quad$ or $\quad-18<-14$
(3) Explain how you know whether you need to use absolute value to answer the question. What do you have to consider?
(4) Find the distance between the ordered pairs.
a. $(-2,-1)$ and $(-2,3)$
Distance: \qquad
b. $(-2,3)$ and $(3,3)$

Distance: \qquad
c. $(3,-1)$ and $(3,-4.5)$

Distance: \qquad
d. $(-11,9)$ and ($-11,-32$) Distance: \qquad

Practice Solve.
(5) $2 \frac{1}{2} \div \frac{3}{4}=$ \qquad (6) $1 \frac{2}{3} \div \frac{1}{3}=$ \qquad (7) $3 \frac{3}{4} \div \frac{1}{3}=$
\qquad

Temperatures in Seattle

Home Link 4-14
NAME

The city of Seattle is located in the state of Washington. It is located 113 miles south of the U.S.-Canadian border at a latitude of $47^{\circ} 37^{\prime} \mathrm{N}$. The city is located at sea level on Puget Sound, near the Pacific Ocean.
(1) Use the information above to predict whether Seattle's monthly average temperature data will have a large or small mean absolute deviation. Explain your answer.
\qquad
\qquad
(2) The average monthly temperatures for Seattle are given below. Find the listed data landmarks and measures of spread. Round your answers to the nearest tenth.

Average Monthly Temperatures (${ }^{\circ}$ F)																							
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec												
41	43	46	50	56	61	65	66	61	53	45	41												

a. Minimum: \qquad b. Maximum: \qquad c. Median: \qquad
d. Mean: \qquad e. Range: \qquad f. Mean absolute deviation: \qquad
(3) Use the data landmarks and measures of spread you found in Problem 2 to draw some conclusions about Seattle's average monthly temperatures.
\qquad
\qquad
\qquad

Bring in one 3-dimensional shape with faces made up of polygons. It will go in the class Shapes Museum. Find a shape that has at least one face that is not a rectangle. See pages 246-248 in your Student Reference Book for examples of the kinds of shapes to bring.

Practice Solve.

(4) $=0.09 \div 0.03$
(5)
$0.75 \div 0.3=$ \qquad
(6) $24 \div 0.48=$ \qquad (7)
$=5.2 \div 1.6$

